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Why are we here?

- FOL is pretty expressive, many utilities

- Determining if a FOL example is SAT is hard
- Propositional SAT is (comparatively) easy

- Perhaps we can meet SAT halfway

- Limit ourselves to “theories”



Two Directions

- Eager: Aaron
- Translate necessary theories into SAT, and solve
- Lazy: Erin (sorry)
- Solve SAT, and then see if it also works with theory



Theories?

- Constraints over FOL
- Example:

X<YNM~(X<Y+0)
- 2 (signature)



Theories? Cont'd

- Equality (Needs no theories!)

- Integer and Real Arithmetic (no multiplication — why?)
- Arrays

- Fixed-width bit vectors

- Inductive data types



The Importance of Being Eager

- Idea: given statement, “translate” sufficient facts from
theory to derive “equisatisfiable” SAT clause

- Tricky part: translation!
- Correctness
- Speed
- Size



Beginning Translation

- Where do we start?
- Integer arithmetic, equality, and enhance with “limited lambdas.”

- Path to SAT

- Eliminate (expand) lambdas, then functions and predicates, and
then integer to boolean form.

- Wait, lambdas?



String Replacement for Translation

- Eliminate Lambdas
- Straightforward

- Function/Predicate Elimination
- Naive: replace every f(a, b, ... z) with atom xF
- Issue: If f(a, b) appears twice?



From Arithmetic to Boolean

- Where are we?
Y a4 .
- Integer linear programming!

- Simpler: direct encoding

- Replace each unigue constraint in the linear arithmetic formula with
a fresh Boolean variable (creates F, ;)

- Generate a Boolean formula F_, . that encodes constraints to
maintain validity of formula

- AND and SAT!

- So wait, how do we encode constraints?
- Equality, difference, and arbitrary!



Translation 4

- Small-domain encodings
- A satisfying assignment is bounded by m, n, length of a, length of b
- General solver would deal with solution size
* O(logm +log b + m (log m + log a))
- Problem: that m log m term — may have thousands of constraints!
- Equality
- Difference
- Sum constraints of form (x; + x;) R by
- Mostly-difference constraints with sparse (few vars per) constraint



L
Lazy Approach

- Lazy SMT T-Solvers are the alternative to the eager
approach

- Start with an efficient SAT solver

- Integrate with decision procedures for first-order theories
(Theory, or T-Solvers)



L
Integrating SAT Solver and T-Solver

- Offline schema
- Uses DPLL and T-Solver as two separate parts
- Give boolean version (¢") of input formula (o)
 Input to DPLL
- " unsatisfiable? Then @ is T-unsatisfiable
- @ satisfied by uP? Input p into T-solver
- If nis T-consistent, then ¢ is T-consistent
* If pis T-inconsistent, add ~u® to ¢" and restart DPLL



L
Integrating SAT Solver and T-Solver

- Online schema:
- Modifies DPLL to enumerate truth assignments that are checked by

a T-Solver
1. SatValue 7-DPLL (7-formula , 7 -assignment & p) {
2. if (7 -preprocess(yp,u) == Conflict);
3. return Unsat;
4, P = T28(p); p?P = T2B(u);
5. while (1) {
6. T -decide_next_branch (¥, u¥);
T. while (1) {
8. status = 7 -deduce(p?,u?);
9. if (status == Sat) {
10. o= B2T (uP);
11. return Sat; }
12. else if (status == Conflict) {
13. blevel = T -analyze_conflict(p?,uP);
14. if (blevel == 0)
i5. return Unsat;
16. else T -backtrack(blevel, ¥, pu¥);
i7.
i8. else break;

9.} )}



D
How DPLL and T-DPLL Differ

- T-DPLL extends DPLL concepts of:

- Literal deduction: check for new literal assignments by using the
boolean formulas, but also by using the theory

- Conflict deduction: check for boolean conflicts or theory conflicts
that entall {[]}



D
Enhancements to T-DPLL

- Normalize T-atoms

- Static learning

- Early pruning

- T-propagation

- T-backjumping/T-learning

- Generating partial assignments
- Pure-literal filtering



L
Abstract Theory
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"



L
Fair Rule Application Strategy

Termination: Starting from a state @ | g, the strategy generates only finite
derivations.

Soundness: If @, is T-satisfiable, every exhausted derivation of § | ¢, generated

by the strategy ends with a state of the form p | ¢ where p i1s a (T-consistent
total, satisfyving assignment for .

Completeness: If @, is not T-satisfiable, every exhausted derivation of @ |
generated by the strategy ends with Fail.



Properties of T-Solvers

- Input: Collection of T-literals p
- Qutput: T-SAT or T-UNSAT for u

- Typically involve a specific design procedure that was
developed with the background theory in mind



Features of T-Solvers

- Model generation: for a T-consistent set U, the T-solver
can generate a T-model | such that | |=; p

- Conflict set generation: for a T-inconsistent set , the T-
solver can find a subset n — the theory conflict set - which
has caused the inconsistency




Features of T-Solvers

- Incrementality: the T-solver can remember previous calls
— so, If Y, Is T-satisfiable and the T-Solver is called for L,
U W, it does not restart the computation from scratch

- Backtrackability: the T-solver can undo steps to return to
a previous state efficiently



Features of T-Solvers

- Deduction of unassigned literals: if the T-solver is
given a T-consistent set, it can also find and decide literals
from unassigned atoms in the original formula

- Deduction of interface equalities: when returning SAT,
the T-solver can deduce equalities between the
variables/terms in u



L
Theory of Equality

- No restrictions on interpretation of function/predicate
symbols

- Given a signature ), the theory that includes all possible
models is Tg

- Also known as the “empty theory” or the “theory of
equality with uninterpreted functions”



D
Shostak’s Method

- General method to combine theory of equality with other
appropriate theories

- Important definitions:
- solved form S: Each lefthand side appears only once

- Ye(G) means that there will be no conflicts that occur from replacing
variables



L
Shostak Theory

- A consistent theory T with signature ) is a Shostak theory
If:
- > has no predicate symbols
- There is a canonizer function () -terms -> ) -terms) such that |=; s=t
Iff canon(s) == canon(t)
- There is a solver function (3 -eqgs -> formula sets):
- If |=; s#t, then solve(s=t) == {[] }
- Else, solve(s =t) returns a set S of equations in solved form such that
|=1 S=t <->y(S).



L
Splitting on Demand

- T-solvers can demand that the DPLL continue to split
before passing anything to the T-solver

- Literals could be unknown to DPLL, or contain fresh
constant symbols
- Must allow new symbols to be added to the list of clauses

- Allows the T-solver, with it's knowledge of the background
theory, to dictate in which direction DPLL should go



L
Layered Theory Solvers

- T-solvers are “layered” by their complexity levels
- If a solution is not found by a simple T-solver, move on
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